
Statistical Modeling, Winter 2025

Introduction to course

If you are taking this course, I gather that you have (or will have) data in hand, and you are interested in
drawing some inferences from them. For example, you might be interested in quantifying the magnitude
of a treatment effect, or the rate of population change over time - these are examples of parameter
estimation. Alternatively, you might want to test whether the treatment effect differs from a control,
or whether the rate of population change is different from a hypothesized value - these are examples
of inference. In statistical modeling, we start with the data, and we ask “what can we say about the
cause of the data - i.e., the process(es) that generated these data?” Armed with a deterministic model
of the process(es) giving rise to the data, we then incorporate stochasticity to account for uncertainty in
our model, observations, or both. The workhorse under the hood of any statistical model is probability
theory. We choose a reasonable probability distribution for our response variable and estimate the value
of unknown parameters using an appropriate engine (e.g., ordinary least squares, maximum likelihood,
Markov chain Monte Carlo).

Even though this course is concerned primarily with statistical estimation and inference, we’ll need to
brush up on some basics of probability theory. In probability theory, we think about processes that
generate data, and we ask “what can we say about the data generated by such a process?” In other words,
we start with the cause (probability distributions, model, parameters), and then we can generate the
effect (data). We often talk about data-generating processes in a modeling framework. So, we can define
probability theory as the study of data generated by specified processes.

This course is targeted for graduate students in the biological and environmental sciences, but students
from any discipline are welcome. It is important to have at least some background in introductory
statistics and scientific computing with R - I will assume familiarity with these topics. Although certain
calculus concepts are important in statistical modeling, calculus derivations are not. It turns out that
numerical (rather than analytical) approaches are necessary for all but the simplest model scenarios.

We will take a Bayesian approach in this course. Why Bayes? There are many compelling reasons, not
least of which is that Bayesian methods are becoming standard in the life and environmental sciences.
At minimum, students should be able to understand this modern approach to statistics in the literature.
Moreover, the Bayesian philosophy offers an intuitive way of speaking about the probability of parameters.
No more fussing about with the interpretation of a p-value or limiting yourself to a framework of null
hypothesis testing. Pedagogically, learning statistics in a Bayesian framework allows us to peak under
the hood, just a little bit, of the statistical machine. Though this entails a steeper learning curve, the
reward is a deeper understanding and greater flexibility in modeling. For example, once you have a
posterior distribution (more on that soon) for the parameters in your model - you can derive a probability
distribution for any quantity from those parameters. There are also situations where a Bayesian approach
is the only feasible method. Finally, you can incorporate uncertainty from many sources in a logical,
coherent manner (e.g., observation error, measurement error, variability due to random effects).
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