
Statistical Modeling, Winter 2025

Markov chain Monte carlo

The Bayesian approach

• Given new data, we update our beliefs
• All parameters are treated as random variables
• Posterior is proportional to the likelihood x prior

[posterior] ∝ [likelihood][prior]
[𝜃|𝑦] ∝ [𝑦|𝜃][𝜃]

Bayes theorem

[𝜃|𝑦] = [𝑦|𝜃][𝜃]
[𝑦]

[𝑦] is a normalizing constant, with the goal of permitting probabilistic statements about the parameters
in [𝜃]

Example: Bayesian linear regression

𝑦𝑖 ∼ Normal(mean = 𝜇𝑖, SD = 𝜎) [likelihood]
𝜇𝑖 = 𝛼 + 𝛽 ∗ 𝑥𝑖 [linear model]

Parameters we need to estimate: 𝛼, 𝛽, 𝜎

posterior = likelihood × prior
average likelihood

[𝛼, 𝛽, 𝜎 ∣ 𝑦] = [𝑦 ∣ 𝛼, 𝛽, 𝜎] × [𝛼][𝛽][𝜎]
∭ [𝑦 ∣ 𝛼, 𝛽, 𝜎][𝛼][𝛽][𝜎] 𝑑𝛼 𝑑𝛽 𝑑𝜎

The denominator is a beast. In complex models it is impossible to calculate.

Enter MCMC. But first, let’s review the components of a Bayesian analysis.



Step 1: Decide on a prior [𝜃]

Figure 1: Image from a lecture by Che-Castaldo, Collins, Hobbs (2020)

Step 2: Compute the likelihood [𝑦 ∣ 𝜃]

Figure 2: Image from a lecture by Che-Castaldo, Collins, Hobbs (2020)



Step 3: Calculate the numerator [𝑦 ∣ 𝜃] [𝜃]

[𝑦 ∣ 𝜃] [𝜃] = [𝑦, 𝜃]
[𝑦, 𝜃] is the joint distribution

Figure 3: Image from a lecture by Che-Castaldo, Collins, Hobbs (2020)

Step 4: Integrate the joint distribution

The denominator is the area under the joint distribution:

∫𝜃[𝑦 ∣ 𝜃] [𝜃] 𝑑𝜃



Figure 4: Image from a lecture by Che-Castaldo, Collins, Hobbs (2020)

Note that we are dividing each point on the dashed line by the area under the dashed line to obtain a
probability density function.

Figure 5: Image from a lecture by Che-Castaldo, Collins, Hobbs (2020)

How do we compute the posterior probability?

• Analytical approach



• Grid approximation

• Quadratic approximation

• Problems of high dimension will require Markov chain Monte Carlo

Markov chain Monte Carlo

• Markov: Russian mathematician (1856-1922)
• chain: sequence of random samples drawn from a probability distribution
• Monte Carlo: a famous casino

MCMC finds the posterior distribution by sampling from it

• Wait. How is it possible to draw samples from something that is unknown?
• Well, the posterior distribution is not entirely unknown
• [𝜃|𝑦] ∝ [𝑦|𝜃][𝜃]

What are we doing in MCMC?

• The posterior distribution is unknown, but we know the likelihood and the priors (i.e., the joint
probability, [𝜃, 𝑦])

• We want to accumulate many values that represent random samples in proportion to their density
in the posterior distribution

• MCMC generates these samples using [𝜃, 𝑦] to decide which samples to keep and which to throw
away

• We can then use these samples to calculate statistics describing the distribution: means, medians,
credible intervals, etc

MCMC algorithms

Accept-reject methods

• Metropolis (symmetric proposals)
• Metropolis-Hastings (asymmetric proposals)
• Gibbs sampling (adaptive proposals)

– BUGS (Bayesian inferences using Gibbs sampling)
– JAGS (just another Gibbs sampler)

Gradient methods

• Hamiltonian MC

– Stan (named after Stanislaw Ulam)



Metropolis - one parameter

• 𝜃: vector of 𝐾 draws
• 𝜃(𝑘): current value in the chain
• 𝜃(∗): proposed value

1. Choose starting value for 𝜃1

2. Choose a new value, 𝜃(∗), the proposal (can be independent of, or dependent on, 𝜃1)
3. Compute a probability of accepting the proposal
4. Accept the proposed value 𝜃(∗) with the probability computed in step 3
5. Rinse and repeat

Metropolis

Figure 6: Hobbs and Hooten 2015 Fig 7.2



Samples from the posterior distribution

Figure 7: Hobbs and Hooten 2015 Fig 7.2

MCMC - multiple parameters

• For 𝑚 parameters: each of the 𝑚 unknowns has its own chain (i.e., 𝜃1, 𝜃2, 𝜃3,… 𝜃𝑚).
• Assign an initial value to all chains.
• MCMC algorithm cycles over each parameter, treating it as if it were the only unknown - while the

other parameters are treated (temporarily) as if they were known
• This decomposes a multivariate problem into a series of univariate problems

Homework

Read chapter 9 in Statistical Rethinking (McElreath 2020), and work through the code in 9.4 and 9.5 to
practice the mechanics of the algorithm (Hamiltonian MCMC) we will use with rethinking and Stan.

Optional readings:

• chapter 7 in Bayesian Models (Hobbs and Hooten 2015)
• chapter 7 of Bayes Rules (Johnson, Ott, and Dogucu 2022); includes code for a Metropolis-Hastings

algorithm
• a blog post by Thomas Wiecki (especially useful if you are partial to Python)

https://twiecki.io/blog/2015/11/10/mcmc-sampling/
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