Statistical Modeling (OCEANS 140/240)

This course schedule is an adaptation of Richard McElreath’s 2024 course, using his Statistical Rethinking text.

Schedule

Week Date Topic Pre-class SR2 Due
1 Tue., Jan. 7 Intro to course; intro stats and coding review Science Before Statistics 1
1 Thu., Jan. 9 Components of a Bayesian model Garden of Forking Data (to 0:45) 2
2 Tue., Jan. 14 Sampling the imaginary Garden of Forking Data (0:45-1:16) 3 HW1
2 Thu., Jan. 16 Intro to linear models Geocentric Models 4.1-4.4
3 Tue., Jan. 21 Categorical effects, polynomial regression, and splines Categories and Curves (to 1:14) 4.5-4.6; 5.3 HW2
3 Thu., Jan. 23 Multiple regression and intro to causal inference Elemental Confounds 5.1, SR 6
4 Tue., Jan. 28 (More) causal inference Good and Bad Controls 6 HW3
4 Thu., Jan. 30 Overfitting, regularization, model comparison Overfitting 7.1, 7.3-7.6
5 Tue., Feb. 4 Markov chain Monte Carlo MCMC 8.1, 9 HW4
5 Thu., Feb. 6 Generalized linear models; Binomial regression Modeling Events (to 1:16) 10.2, 11.1
6 Tue., Feb. 11 Confounds; Poisson regression Counts and Confounds 11.2 HW5
6 Thu., Feb. 13 Ordered categorical outcomes Ordered Categories 12
7 Tue., Feb. 18 Multilevel models Multilevel Models 13 HW6
7 Thu., Feb. 20 Multilevel models Multilevel Adventures 13
8 Tue., Feb. 25 Multilevel models Correlated Features 14 HW7
8 Thu., Feb. 27 Continuous categories Gaussian Processes 14.5
9 Tue., Mar. 4 Measurement error Measurement 15.1 HW8
9 Thu., Mar. 6 Missing data Missing Data 15.2
10 Tue., Mar. 11 Scientific models Generalized Linear Madness 16 HW9
10 Thu., Mar. 13 Course wrap-up Horoscopes 17